Frontiers in Edge Al with RISC-V: Hyperdimensional Computing vs. Quantized Neural Networks

by Hussam Amrouch Chair of Al Processor Design

Technical University of Munich

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

Confidential

Journey with Edge Al

Edge Al In-Memory Computing

Hyperdimensional Computing

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

The Next Revolution: Al

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

3 Confidential

The Next Revolution: Al

Al Chip: Google TPUv1 [ISCA'17]

src: https://venturebeat.com/2020/07/29/google-claims-its-new-tpus-are-2-7-times-faster-than-the-previous-generation

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

Confidential

Could Efficiency be Dangerous? Let's go back to 1865...

Jevons Paradox

When technology increases the efficiency, the consumption rises.

→ Gain from efficiency will backfire!

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

5 Confidential

The Upcoming Jevons Paradox

Increase in Al Hardware Efficiency

Cost of DNN Training drops 2030: 13% of Total CO₂

CONTRACTOR OF CO

More and more data centers

sources: IEEE Spectrum (2019), Nature (2020)

CO₂

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de Chair of AI Processor Design, Technical University of Munich

More Companies are

adopting AI

Al is reshaping the Future of Humankind But At Which Cost?

Training a single Al model emits carbon > 5x cars in their lifetimes

src: Emma Strubell, et al. "Energy and Policy Considerations for Deep Learning in NLP" in 57th ACL, 2019.

> Chair of AI Processor Design, Technical University of Munich

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

Confidential

CO,

Deep Learning is REALLY Power Hungary!

Google TPU [ISCA'17]

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

8 Confidential

Deep Learning is REALLY Power Hungry!

Labs, E-mail: amrouch@tum.de

9 Confidential

Hyperdimensional in-memory Computing

Emerging Memory

RISC-V Customization

Hyperdimensional Computing Brain-inspired Computing for Edge Al

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

10 Confidential

Hyperdimensional Computing

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

- Large vectors, e.g., 10000 elements
- Randomness is a feature not a bug
- Simple Operations
 - Permutation
 - Binding
 - Bundeling

Similarity is the Core Principle

1. Prepare: Encode real-world data into hyperspace

Example: Language classification

(1) Assign a random vector: VERY large (10k bits)

a=[10110000010000110101]
b=[1010001101101000001]
i
!=[10101111000111100101]

(2) Encoding with N-Grams using two simple operations: **XOR**, **Rotate**

"Hi" \rightarrow [H] XOR [Rotate(i)]

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

15 Confidential

Robustness against HW Errors and Noise

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

HDC vs. QNNs: Learning from Little Data!

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

HDC vs. QNN: Performance / Accuracy

Binary HDC has a superior speed in image classification

Both QNN, HDC employ MACs, but QNN is faster than Fix-point HDC

RISC-V Customization

Hyperdimensional Computing

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

RISC-V Customization for Edge AI: Training

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

20 Confidential

RISC-V Customization for Edge AI: Training

Inference rate reaches ~200 samples per second

SYNOPSYS[®] ASIP Designer

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

21 Confidential

HDC relies on large vectors with > 1000 dimensions
→ Von Neumann architecture and memory bottleneck

In our analysis: Loading the vectors > 30% of cycles !

Hyperdimensional In-Memory Computing

Emerging FeFET

RISC-V Customization

Hyperdimensional Computing

Brain-inspired Computing for Edge Al

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

From FET to FeFET

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

24 Confidential

FeFET: Emerging Memory

In-Memory Computing using FeFETs

In-Memory Computing using FeFETs

In-Memory Hyperdimensional Computing

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

28 Confidential

Very Efficient MAC using FeFET Crossbar

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

29 Confidential

From In-Memory → In-Transistor Computing

S. Thomann / H. Amrouch, "Compact ferroelectric programmable majority gate for compute-in-memory applications," in 68th Annual IEEE International Electron Devices Meeting (IEDM), 2022

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

30 Confidential

From In-Memory → In-Transistor Computing

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

31 Confidential

From In-Memory → In-Transistor Computing

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

32 Confidential

HDC Computing ... Hope or Hype?

HDC can learn from little data

In-Memory Computing is also a KEY for very efficient HDC

HDC enables training on the edge BUT RISC-V customization is the KEY

HDC is VERY robust against errors

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

33 Confidential

Without them, nothing would be possible

Device / Circuit

Shubham Kumar (PhD)

Swetaki Chatterjee (PhD)

Device / Circuit

Shivendra Parihar (PhD)

Dr. Victor van Santen

Digital Design

Shubham Kumar (PhD)

Simon Thomann (PhD)

Deep Learning

Paul Genssler (PhD)

Rodion Novkin (PhD)

Chair of AI Processor Design, Technical University of Munich

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

34 Confidential

Acknowledgement

SYNOPSYS®

ADVANTEST®

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

35 Confidential

On the Brink of a new Era in Edge Al

RISC-V Customization

H. Amrouch @ TUM Venture Labs, E-mail: amrouch@tum.de

36 Confidential

Chair of AI Processor Design, Technical University of Munich

ПП

Technical

University of Munich