→ Unlocking RISC-V's potential with Custom Compute

Kostas Padarnitsas, Codasip

Future of Computing Day 2024

→ Codasip overview

- Founded in 2014
- HQ in Munich
- ~250 employees
- Design teams in Europe
- Processor solution company
- NRSC-V° co-founder
- Enabling Custom Compute

→ All failing: Moore's law, Dennard scaling, Amdahl's law

- After 50 years of driving
 semiconductor economics,
 underlying "semiconductor laws"
 are failing
- At the same time, everything is getting prohibitively expensive

Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018 → Only really one option near-term

Customize hardware to workload

(heterogeneous compute/domain specific acceleration)

 \rightarrow This is what Codasip does...

Transforming how the world designs microprocessors

C-based language

Design tool

Open ISA

\rightarrow RISC-V

- Open standard
- Modular Instruction Set Architecture
- Tailor an architecture or microarchitecture to a workload
- Allows different implementations
 - Embedded vs. application
 - Standard vs. non-standard extensions
 - Open source vs. proprietary, etc.

Base integer	Optional standard extensions	Non-standard extensions
--------------	---------------------------------	----------------------------

→ Codasip Architectural Language (CodAL) Specialized for processor design

C-like programming language with high-level processor architecture constructs and support for automation

```
rf[dst] += rf[src1] * rf[src2];
```

};

→ Codasip Studio An automated approach to custom compute

→ Customization optimizes your results

→ Value of customization

FIR filtering profiling

- Runtime reduction >96%
- Energy consumption reduction >90%
- For +36% silicon area
 - → Max frequency not affected
 - → Performance gain >32x

کا Introducing CHERI

→ CHERI (Capability Hardware Enhanced RISC Instructions)

Fine-grained memory protection

Revisits fundamental design choices in hardware and software to dramatically improve system security

Extend conventional hardware ISAs

- Memory protection
- Scalable compartmentalization

→ A security market innovation

Codasip brings 10,000 people years of R&D to the mass market with the first deployable CPUs and commercially supported offering.

- Small performance hit for CHERI code on area footprint
 around 5%
- Capabilities Limited (UK) in a study compiled 6 million lines of C/C++ code for memory safety – 0.026% lines of codes needed to be modified

↘Functional Safety certification

→ Certification for functional safety and cybersecurity

February: IP hardware development process certified according to ISO 26262 and ISO/SAE 21434

April: First ISO 26262 product certification for L31AS

Compare

WFI

....

L31

Interrupt

....

L31

RISC-V debug

→ Summary

- 1. Semiconductor "laws" are failing
- 2. Custom compute provides an extraordinary opportunity to differentiate
- 3. Codasip's unique approach...
 - 1. ... leverages RISC-V open standards
 - 2. ... provides architectural ownership
 - 3. ... delivers differentiated results

Codasip

→ Thank you!