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• Machine learning workloads are emerging rapidly → Resource demands are rising exponentially

• Conventional (cloud-based) approach has lots of disadvantages

• Power consumption (CO2 footprint)

• Latency (not suitable for real-time applications)

• Privacy

→ Run Inferences on-device

• Focus: Extreme Edge Devices (TinyML)

• Many methodologies could also be applied to more powerful HW later

Embedded Machine Learning

Philipp van Kempen (TUM) | 23.04.2024 3



• There exist numerous off-the-shelf platforms for embedded ML

• Edge TPU (Google)

• Jetson Nano (NVIDIA)

• For low-power applications (MCUs) these are not applicable

▪ General purpose MCUs are lacking support for efficient TinyML operations

▪ Specialize hardware (ISA+Microarchitecture) to targeted application

→ Design Application Specific Instruction-Set Processors (ASIPs)

• Approaches:

▪ Manual

▪ HW/SW-Codesign driven (High-level Synthesis)

▪ Mixed

ASIP Design
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Our Vision
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HW

• Microarchitecture

• Memory Hierarchy

• RTL Design

SW

• ML Deployment

• Kernel Libraries

• Compiler Optimizations

Model

• Network Topology

• Training

• Compression

ISA

• RISC-V Extensions

• Custom Instructions

Co-Design

HW-aware

NAS

ISA DSE

Autotuning

HW DSE
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Challenge Description Solution

Availability Missing Hardware, Specifications,…

Benchmarking

Profiling

Validation

Tuning

Retargeting

Overview of Challenges
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Challenge: Availability
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Problem: Hardware for testing on-device is not available (or yet to be designed)

• Example: RISC-V Vector Extension (RVV v1.0)

• Ratified in Late 2021, ramp-up for HW using RVV takes at least 2-3 years

• Numerous HW released with old specification →Avoid if possible

• First commercial development board showed up in early 2024

Solution: Virtual Prototyping

• [ETISS]: Extendable Translating Instruction Set Simulator

• [CoreDSL]: Describe processor cores at the level of their instruction set architecture

• [CorePerfDSL]: Modelling of pipeline/microarchitecture for performance estimation

Open 

Source!
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Challenge Description Solution

Availability Missing Hardware, Specifications,… Virtual Prototyping (ETISS & CoreDSL)

Benchmarking Comparison between different Frameworks, 
Targets,… difficult

Profiling

Validation

Tuning

Retargeting

Overview of Challenges
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Challenge: Benchmarking

Philipp van Kempen (TUM) | 23.04.2024

Problem: Running comparable benchmarks on X targets, Y frameworks, Z toolchains, U Models 

• Need a single tool for each target/framework/toolchain/model instead of hardcoded scripts

Solution: End-to-End TinyML Deployment and Benchmarking Flow

• [MLIF] (Machine Learning Interface)

• Framework/target-independent abstraction layers for Target SW

• [MLonMCU]

• Provides support for

• 15+ targets (mainly RISC-V simulators)

• 6 backends ([TVM] and TFLM)

• Handling of Dependencies

• Analysis and Exploration methods

• Designed with parallelism/reproducibility in mind

Open 

Source!
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Challenge Description Solution

Availability Missing Hardware, Specifications,… Virtual Prototyping (ETISS & CoreDSL)

Benchmarking Comparison between different Frameworks, 
Targets,… difficult

TinyML Deployment & Benchmarking Flow 
(MLonMCU)

Profiling Where to apply optimizations? How to find 
bottlenecks?

Validation

Tuning

Retargeting

Overview of Challenges
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Challenge: Profiling
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Problem: Do not waste time optimizing irrelevant parts of a program

• Example:

• Optimized NN-kernel to be 2x faster → End-to-End inference speed only improves by 1%?

• 95% of the total runtime is spent in different layers

Solution: Multi-level profiling/tracing methodology and bottleneck detection

• Convert RTL/ISS traces into Gprof/Callgrind compatible format

→Allows to use existing tools for analysis

• Multiple Events: Instructions, Cycles, Cache Misses, Branches,…

• Annotation of sources at various abstraction layers

→ ML Layers, C/C++, LLVM-IR, Assembly

Work in 

progress!
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Challenge Description Solution

Availability Missing Hardware, Specifications,… Virtual Prototyping (ETISS & CoreDSL)

Benchmarking Comparison between different Frameworks, 
Targets,… difficult

TinyML Deployment & Benchmarking Flow 
(MLonMCU)

Profiling Where to apply optimizations? How to find 
bottlenecks?

Multi-level profiling based on static/dynamic 
binary/trace analysis

Validation How to guarantee Model accuracy is maintained 
during deployment?

Tuning

Retargeting

Overview of Challenges
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Challenge: Validation
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Problem: We have to maintain original model’s accuracy during deployment

• Degradations in accuracy can happen at several stages

• Compression (Quantization/Pruning)

• ML Compiler / Kernels → Rounding, Overflows,…

• Bugs (SW Compiler, ISA, RTL)

Solution: Dataset-based automatic validation framework integrated in MLonMCU

• Target-independent (MLIFIO abstraction layer)

• Highly configurable (Supported Metrics, Thresholds,…)

• Automated and efficient (minimal runtime/resource overheads)

Open 

Source!
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Challenge Description Solution

Availability Missing Hardware, Specifications,… Virtual Prototyping (ETISS & CoreDSL)

Benchmarking Comparison between different Frameworks, 
Targets,… difficult

TinyML Deployment & Benchmarking Flow 
(MLonMCU)

Profiling Where to apply optimizations? How to find 
bottlenecks?

Multi-level profiling based on static/dynamic 
binary/trace analysis

Validation How to guarantee Model accuracy is maintained 
during deployment?

Target-independent Validation Flow in MLonMCU
(MLIFIO)

Tuning Can we optimize the generated Kernels for specific 
targets efficiently?

Retargeting

Overview of Challenges

Philipp van Kempen (TUM) | 23.04.2024 14



Challenge: Tuning
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Problem: How to get target-optimized ML kernels 

• Default (fallback) TVM kernels should be avoided

• Writing hand-optimized kernels (see CMSIS-NN) is infeasible

Solution: Perform on-device autotuning with TVM

• Available tuners: AutoTVM, AutoScheduler, MetaSchedule

• Improvements required to improve the tuning process

• Reliability

• Cost Models (target-aware & workload-aware)

• Efficiency

Work in 

progress!
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Challenge Description Solution

Availability Missing Hardware, Specifications,… Virtual Prototyping (ETISS & CoreDSL)

Benchmarking Comparison between different Frameworks, 
Targets,… difficult

TinyML Deployment & Benchmarking Flow 
(MLonMCU)

Profiling Where to apply optimizations? How to find 
bottlenecks?

Multi-level profiling based on static/dynamic 
binary/trace analysis

Validation How to guarantee Model accuracy is maintained 
during deployment?

Target-independent Validation Flow in MLonMCU
(MLIFIO)

Tuning Can we optimize the generated Kernels for specific 
targets efficiently?

TVM’s MetaScheduler with improvements

Retargeting How to avoid manual efforts to support new target 
hardware?

Overview of Challenges
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Definition

“In software engineering, retargeting is an attribute of software development tools that have been specifically 

designed to generate code for more than one computing platform.”

→ Here: Retargetable Compilers

Types of Compilers

• SW Compilers (LLVM, GCC) → See next slides

• ML Compilers (TVM) → Planned

• HW Compilers

Retargeting
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Seal5 - Semi-automated LLVM Support for RISC-V ISA Extensions (Including Autovectorization)

Inputs

• CoreDSLcode for custom instructions

• Optional: YAML Settings

Outputs

• Patched LLVM Toolchain

Introducing Seal5
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Retargeting Support Levels (LLVM)
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Tool Assembler
(Encoding, Format, Effects,…)

Intrinsics/Builtins
(LLVM-IR, C/C++)

CodeGen
(ISel Patterns, Legalization)

Auto-Vectorization
(SIMD, Heuristics,…)

Extensible 

Compiler [DLR] (Needs user inputs)

-

[TUDA]

OpenASIP 2.0 

[TUNI]

Ours

[Seal5] (Experimental) (Semi-automated) (Narrow 32-bit SIMD only)

asm("mac x3, x4, x5"); __builtin_mac(acc, x, y); acc += x * y;
Usage by

SW Developer:

for (i = 0; i < n; i++) {

  acc += arr_x[i] * arr_y[i];

}
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• During compilation the original program is 

lowered to intermediate representations (IRs) 

in a step-by-step fashion

• Optimizations are applied along the way

• During Instruction Selection Generic LLVM 

instructions are converted to target-specific 

MachineInstructions

• Instruction Selection depends on manually

specified patterns to insert any instructions.

Why do we need patterns?
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?
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Method

1. Convert CoreDSLbehavior to LLVM-IR functions

2. Perform lowering in a similar way to target SW

3. Add hook to emit final DAG right before 

Instruction Selection would take place

4. Transform DAG nodes to TableGencode for 

patterns

Advantages

▪ Re-use existing code in LLVM

▪ Same optimizations → increased likeliness that 

extracted patterns will actually match

▪ SIMD-instructions are detected automatically

Generating ISel Patterns
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Core-V Extension (OpenHW Group)

• 300+ ALU/Mem/SIMD/… instructions

• Implemented in [CV32E40P]

Configurations

1. Baseline (RV32IM)

2. Core-V Reference

3. Seal5 Generated

a) Without SIMD

b) With SIMD

Benchmarks

• 100+ embedded programs

Seal5 Evaluation (Core-V)
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Challenge Description Solution

Availability Missing Hardware, Specifications,… Virtual Prototyping (ETISS & CoreDSL)

Benchmarking Comparison between different Frameworks, 
Targets,… difficult

TinyML Deployment & Benchmarking Flow 
(MLonMCU)

Profiling Where to apply optimizations? How to find 
bottlenecks?

Multi-level profiling based on static/dynamic 
binary/trace analysis

Validation How to guarantee Model accuracy is maintained 
during deployment?

Target-independent Validation Flow in MLonMCU 
(MLIFIO)

Tuning Can we optimize the generated Kernels for specific 
targets efficiently?

TVM’s MetaScheduler with improvements

Retargeting How to avoid manual efforts to support new target 
hardware?

Metamodel-based Generation of LLVM and TVM 
Patches

Overview of Challenges
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Further challenges
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Not covered in this talk:

• General Constraints of Embedded Systems

• ML Specifics

▪ Model Design & Model Compression

• HW Specifics

▪ RTL-generation for ASIPs (HW/SW-Codesign)

• Real-world problems

▪ Flash time bottleneck & wearing out hardware

Starting with pre-trained and 

quantized Models

Required to estimate implementation 

overhead of optimizations 

Needs to be considered at all 

design stages
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Summary

• Without overcoming aforementioned challenges the HW/SW co-exploration (DSE) will be infeasible

• Retargeting is essential to eliminate manual efforts

Seal5 – Retargeting LLVM Compiler for RISC-V

• Novel approach for robust pattern generation and SIMD support

• Compared with reference Core-V vendor toolchain

Next steps:

• Retargeting support for ML Compilation

• Solve remaining challenges

Conclusion
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