
Challenges for Embedded Machine Learning

on Custom RISC-V ASIPs

Philipp van Kempen

Technical University of Munich

TUM School of Computation, Information and Technology

Chair of Electronic Design Automation

Munich, 23th April 2024

This w ork has been developed in the project MANNHEIM-FlexKI. MANNHEIM-FlexKI is funded by the German Ministry of

Education and Research (BMBF) (reference numbers: 01IS22086A-L). The authors are responsible for the content of this publication.

1. Motivation / Scenario

2. Overview of Challenges

3. Solutions

4. Conclusion / Outlook

Content

Philipp van Kempen (TUM) | 23.04.2024 2

• Machine learning workloads are emerging rapidly → Resource demands are rising exponentially

• Conventional (cloud-based) approach has lots of disadvantages

• Power consumption (CO2 footprint)

• Latency (not suitable for real-time applications)

• Privacy

→ Run Inferences on-device

• Focus: Extreme Edge Devices (TinyML)

• Many methodologies could also be applied to more powerful HW later

Embedded Machine Learning

Philipp van Kempen (TUM) | 23.04.2024 3

• There exist numerous off-the-shelf platforms for embedded ML

• Edge TPU (Google)

• Jetson Nano (NVIDIA)

• For low-power applications (MCUs) these are not applicable

▪ General purpose MCUs are lacking support for efficient TinyML operations

▪ Specialize hardware (ISA+Microarchitecture) to targeted application

→ Design Application Specific Instruction-Set Processors (ASIPs)

• Approaches:

▪ Manual

▪ HW/SW-Codesign driven (High-level Synthesis)

▪ Mixed

ASIP Design

Philipp van Kempen (TUM) | 23.04.2024 4

Our Vision

Philipp van Kempen (TUM) | 23.04.2024

HW

• Microarchitecture

• Memory Hierarchy

• RTL Design

SW

• ML Deployment

• Kernel Libraries

• Compiler Optimizations

Model

• Network Topology

• Training

• Compression

ISA

• RISC-V Extensions

• Custom Instructions

Co-Design

HW-aware

NAS

ISA DSE

Autotuning

HW DSE

5

Challenge Description Solution

Availability Missing Hardware, Specifications,…

Benchmarking

Profiling

Validation

Tuning

Retargeting

Overview of Challenges

Philipp van Kempen (TUM) | 23.04.2024 6

Challenge: Availability

Philipp van Kempen (TUM) | 23.04.2024

Problem: Hardware for testing on-device is not available (or yet to be designed)

• Example: RISC-V Vector Extension (RVV v1.0)

• Ratified in Late 2021, ramp-up for HW using RVV takes at least 2-3 years

• Numerous HW released with old specification →Avoid if possible

• First commercial development board showed up in early 2024

Solution: Virtual Prototyping

• [ETISS]: Extendable Translating Instruction Set Simulator

• [CoreDSL]: Describe processor cores at the level of their instruction set architecture

• [CorePerfDSL]: Modelling of pipeline/microarchitecture for performance estimation

Open

Source!

7

Challenge Description Solution

Availability Missing Hardware, Specifications,… Virtual Prototyping (ETISS & CoreDSL)

Benchmarking Comparison between different Frameworks,
Targets,… difficult

Profiling

Validation

Tuning

Retargeting

Overview of Challenges

Philipp van Kempen (TUM) | 23.04.2024 8

Challenge: Benchmarking

Philipp van Kempen (TUM) | 23.04.2024

Problem: Running comparable benchmarks on X targets, Y frameworks, Z toolchains, U Models

• Need a single tool for each target/framework/toolchain/model instead of hardcoded scripts

Solution: End-to-End TinyML Deployment and Benchmarking Flow

• [MLIF] (Machine Learning Interface)

• Framework/target-independent abstraction layers for Target SW

• [MLonMCU]

• Provides support for

• 15+ targets (mainly RISC-V simulators)

• 6 backends ([TVM] and TFLM)

• Handling of Dependencies

• Analysis and Exploration methods

• Designed with parallelism/reproducibility in mind

Open

Source!

9

Challenge Description Solution

Availability Missing Hardware, Specifications,… Virtual Prototyping (ETISS & CoreDSL)

Benchmarking Comparison between different Frameworks,
Targets,… difficult

TinyML Deployment & Benchmarking Flow
(MLonMCU)

Profiling Where to apply optimizations? How to find
bottlenecks?

Validation

Tuning

Retargeting

Overview of Challenges

Philipp van Kempen (TUM) | 23.04.2024 10

Challenge: Profiling

Philipp van Kempen (TUM) | 23.04.2024

Problem: Do not waste time optimizing irrelevant parts of a program

• Example:

• Optimized NN-kernel to be 2x faster → End-to-End inference speed only improves by 1%?

• 95% of the total runtime is spent in different layers

Solution: Multi-level profiling/tracing methodology and bottleneck detection

• Convert RTL/ISS traces into Gprof/Callgrind compatible format

→Allows to use existing tools for analysis

• Multiple Events: Instructions, Cycles, Cache Misses, Branches,…

• Annotation of sources at various abstraction layers

→ ML Layers, C/C++, LLVM-IR, Assembly

Work in

progress!

11

Challenge Description Solution

Availability Missing Hardware, Specifications,… Virtual Prototyping (ETISS & CoreDSL)

Benchmarking Comparison between different Frameworks,
Targets,… difficult

TinyML Deployment & Benchmarking Flow
(MLonMCU)

Profiling Where to apply optimizations? How to find
bottlenecks?

Multi-level profiling based on static/dynamic
binary/trace analysis

Validation How to guarantee Model accuracy is maintained
during deployment?

Tuning

Retargeting

Overview of Challenges

Philipp van Kempen (TUM) | 23.04.2024 12

Challenge: Validation

Philipp van Kempen (TUM) | 23.04.2024

Problem: We have to maintain original model’s accuracy during deployment

• Degradations in accuracy can happen at several stages

• Compression (Quantization/Pruning)

• ML Compiler / Kernels → Rounding, Overflows,…

• Bugs (SW Compiler, ISA, RTL)

Solution: Dataset-based automatic validation framework integrated in MLonMCU

• Target-independent (MLIFIO abstraction layer)

• Highly configurable (Supported Metrics, Thresholds,…)

• Automated and efficient (minimal runtime/resource overheads)

Open

Source!

13

Challenge Description Solution

Availability Missing Hardware, Specifications,… Virtual Prototyping (ETISS & CoreDSL)

Benchmarking Comparison between different Frameworks,
Targets,… difficult

TinyML Deployment & Benchmarking Flow
(MLonMCU)

Profiling Where to apply optimizations? How to find
bottlenecks?

Multi-level profiling based on static/dynamic
binary/trace analysis

Validation How to guarantee Model accuracy is maintained
during deployment?

Target-independent Validation Flow in MLonMCU
(MLIFIO)

Tuning Can we optimize the generated Kernels for specific
targets efficiently?

Retargeting

Overview of Challenges

Philipp van Kempen (TUM) | 23.04.2024 14

Challenge: Tuning

Philipp van Kempen (TUM) | 23.04.2024

Problem: How to get target-optimized ML kernels

• Default (fallback) TVM kernels should be avoided

• Writing hand-optimized kernels (see CMSIS-NN) is infeasible

Solution: Perform on-device autotuning with TVM

• Available tuners: AutoTVM, AutoScheduler, MetaSchedule

• Improvements required to improve the tuning process

• Reliability

• Cost Models (target-aware & workload-aware)

• Efficiency

Work in

progress!

15

Challenge Description Solution

Availability Missing Hardware, Specifications,… Virtual Prototyping (ETISS & CoreDSL)

Benchmarking Comparison between different Frameworks,
Targets,… difficult

TinyML Deployment & Benchmarking Flow
(MLonMCU)

Profiling Where to apply optimizations? How to find
bottlenecks?

Multi-level profiling based on static/dynamic
binary/trace analysis

Validation How to guarantee Model accuracy is maintained
during deployment?

Target-independent Validation Flow in MLonMCU
(MLIFIO)

Tuning Can we optimize the generated Kernels for specific
targets efficiently?

TVM’s MetaScheduler with improvements

Retargeting How to avoid manual efforts to support new target
hardware?

Overview of Challenges

Philipp van Kempen (TUM) | 23.04.2024 16

Definition

“In software engineering, retargeting is an attribute of software development tools that have been specifically

designed to generate code for more than one computing platform.”

→ Here: Retargetable Compilers

Types of Compilers

• SW Compilers (LLVM, GCC) → See next slides

• ML Compilers (TVM) → Planned

• HW Compilers

Retargeting

Philipp van Kempen (TUM) | 23.04.2024 17

Seal5 - Semi-automated LLVM Support for RISC-V ISA Extensions (Including Autovectorization)

Inputs

• CoreDSLcode for custom instructions

• Optional: YAML Settings

Outputs

• Patched LLVM Toolchain

Introducing Seal5

Philipp van Kempen (TUM) | 23.04.2024 18

Retargeting Support Levels (LLVM)

Philipp van Kempen (TUM) | 23.04.2024

Tool Assembler
(Encoding, Format, Effects,…)

Intrinsics/Builtins
(LLVM-IR, C/C++)

CodeGen
(ISel Patterns, Legalization)

Auto-Vectorization
(SIMD, Heuristics,…)

Extensible

Compiler [DLR] (Needs user inputs)

-

[TUDA]

OpenASIP 2.0

[TUNI]

Ours

[Seal5] (Experimental) (Semi-automated) (Narrow 32-bit SIMD only)

asm("mac x3, x4, x5"); __builtin_mac(acc, x, y); acc += x * y;
Usage by

SW Developer:

for (i = 0; i < n; i++) {

 acc += arr_x[i] * arr_y[i];

}

19

• During compilation the original program is

lowered to intermediate representations (IRs)

in a step-by-step fashion

• Optimizations are applied along the way

• During Instruction Selection Generic LLVM

instructions are converted to target-specific

MachineInstructions

• Instruction Selection depends on manually

specified patterns to insert any instructions.

Why do we need patterns?

Philipp van Kempen (TUM) | 23.04.2024

?

20

Method

1. Convert CoreDSLbehavior to LLVM-IR functions

2. Perform lowering in a similar way to target SW

3. Add hook to emit final DAG right before

Instruction Selection would take place

4. Transform DAG nodes to TableGencode for

patterns

Advantages

▪ Re-use existing code in LLVM

▪ Same optimizations → increased likeliness that

extracted patterns will actually match

▪ SIMD-instructions are detected automatically

Generating ISel Patterns

Philipp van Kempen (TUM) | 23.04.2024 21

Core-V Extension (OpenHW Group)

• 300+ ALU/Mem/SIMD/… instructions

• Implemented in [CV32E40P]

Configurations

1. Baseline (RV32IM)

2. Core-V Reference

3. Seal5 Generated

a) Without SIMD

b) With SIMD

Benchmarks

• 100+ embedded programs

Seal5 Evaluation (Core-V)

Philipp van Kempen (TUM) | 23.04.2024 22

Challenge Description Solution

Availability Missing Hardware, Specifications,… Virtual Prototyping (ETISS & CoreDSL)

Benchmarking Comparison between different Frameworks,
Targets,… difficult

TinyML Deployment & Benchmarking Flow
(MLonMCU)

Profiling Where to apply optimizations? How to find
bottlenecks?

Multi-level profiling based on static/dynamic
binary/trace analysis

Validation How to guarantee Model accuracy is maintained
during deployment?

Target-independent Validation Flow in MLonMCU
(MLIFIO)

Tuning Can we optimize the generated Kernels for specific
targets efficiently?

TVM’s MetaScheduler with improvements

Retargeting How to avoid manual efforts to support new target
hardware?

Metamodel-based Generation of LLVM and TVM
Patches

Overview of Challenges

Philipp van Kempen (TUM) | 23.04.2024

A
n

a
lys

is
A

u
to

m
a
tio

n

23

Further challenges

Philipp van Kempen (TUM) | 23.04.2024

Not covered in this talk:

• General Constraints of Embedded Systems

• ML Specifics

▪ Model Design & Model Compression

• HW Specifics

▪ RTL-generation for ASIPs (HW/SW-Codesign)

• Real-world problems

▪ Flash time bottleneck & wearing out hardware

Starting with pre-trained and

quantized Models

Required to estimate implementation

overhead of optimizations

Needs to be considered at all

design stages

24

Summary

• Without overcoming aforementioned challenges the HW/SW co-exploration (DSE) will be infeasible

• Retargeting is essential to eliminate manual efforts

Seal5 – Retargeting LLVM Compiler for RISC-V

• Novel approach for robust pattern generation and SIMD support

• Compared with reference Core-V vendor toolchain

Next steps:

• Retargeting support for ML Compilation

• Solve remaining challenges

Conclusion

Philipp van Kempen (TUM) | 23.04.2024 25

[TUDA] Thesis: Halkenhäuser, M. Automatic Compiler Support for Application-Specific Instruction Set Architecture Extensions (Master's thesis, Technische Universität).

[DLR] Paper: Schlamelcher, J., & Grüttner, K. (2022). A DSL based approach for supporting custom RISC-V instruction extensions in LLVM.

Repo: https://github.com/DLR-SE/extensible-compiler

[TUNI] Paper: Hepola, K., Multanen, J., & Jääskeläinen, P. (2022, July). OpenASIP 2.0: co-design toolset for RISC-V application-specif ic instruction-set processors. In 2022

 IEEE 33rd International Conference on Application-specific Systems, Architectures and Processors (ASAP) (pp. 161-165). IEEE.

Repo: https://github.com/cpc/openasip

[CV32E40P] Website: OpenHW Group CV32E40P User Manual - https://cv32e40p.readthedocs.io/en/latest

[ETISS] Paper: Mueller-Gritschneder, Daniel, et al. "The extendable translating instruction set simulator (ETISS) interlinked w ith an MDA framew ork for fast RISC prototyping."

 Proceedings of the 28th International Symposium on Rapid System Prototyping: Shortening the Path from Specification to Prototype. 2017.

Repo: https://github.com/tum-ei-eda/etiss

[CoreDSL] Paper: Emrich, Karsten, et al. "A Flexible Simulation Environment for RISC-V." RISC-V Summit Europe. 2023.

Repo: https://github.com/Minres/CoreDSL

[CorePerfDSL] Paper: Foik, Conrad, Daniel Mueller-Gritschneder, and Ulf Schlichtmann. "CorePerfDSL: A Flexible Processor Description Language for Software Performance

 Simulation." 2022 Forum on Specification & Design Languages (FDL). IEEE, 2022.

Repo: N/A

[MLIF] Repo: https://github.com/tum-ei-eda/mlonmcu-sw

[MLonMCU] Paper: van Kempen, Philipp, et al. "MLonMCU: TinyML Benchmarking w ith Fast Retargeting." arXiv preprint arXiv:2306.08951 (2023).

Repo: https://github.com/tum-ei-eda/mlonmcu

[TVM] Paper: Chen, Tianqi, et al. "TVM: end-to-end optimization stack for deep learning." arXiv preprint arXiv:1802.04799 11.2018 (2018): 20.

Repo: https://github.com/apache/tvm

[Seal5] Paper: N/A

Repo: Release in May 2024

References

Philipp van Kempen (TUM) | 23.04.2024 26

https://github.com/DLR-SE/extensible-compiler
https://github.com/cpc/openasip
https://cv32e40p.readthedocs.io/en/latest
https://github.com/tum-ei-eda/etiss
https://github.com/Minres/CoreDSL
https://github.com/tum-ei-eda/mlonmcu-sw
https://github.com/tum-ei-eda/mlonmcu
https://github.com/apache/tvm

	Slide 1: Challenges for Embedded Machine Learning on Custom RISC-V ASIPs
	Slide 2: Content
	Slide 3: Embedded Machine Learning
	Slide 4: ASIP Design
	Slide 5: Our Vision
	Slide 6: Overview of Challenges
	Slide 7: Challenge: Availability
	Slide 8: Overview of Challenges
	Slide 9: Challenge: Benchmarking
	Slide 10: Overview of Challenges
	Slide 11: Challenge: Profiling
	Slide 12: Overview of Challenges
	Slide 13: Challenge: Validation
	Slide 14: Overview of Challenges
	Slide 15: Challenge: Tuning
	Slide 16: Overview of Challenges
	Slide 17: Retargeting
	Slide 18: Introducing Seal5
	Slide 19: Retargeting Support Levels (LLVM)
	Slide 20: Why do we need patterns?
	Slide 21: Generating ISel Patterns
	Slide 22: Seal5 Evaluation (Core-V)
	Slide 23: Overview of Challenges
	Slide 24: Further challenges
	Slide 25: Conclusion
	Slide 26: References

