

RISC-V: Potentials of open computing for Europe

Stefan Wallentowitz, Hochschule München TUM Venture Labs, 23 April 2024

About Me

Professor at Hochschule München University of Applied Sciences Computer Architecture, Embedded System Security

Member of the RISC-V board of directors

Representing the individual community members

Director at Free and Open Source Silicon Foundation Advocacy, guidance and events

01

What is **RISC-V**?

RISC-V is an Open Instruction Set Architecture

Instruction Set Architecture (ISA) Interface between Software and Hardware (CPU)

ISAs don't matter Companies differentiate on products, small part of system

ISAs matter

High software porting costs and effort

ISA defines instructions and conventions

From baseline integer arithmetics, over privileged instruction to complex vector processing

Global standards are a catalyst to accelerate technical innovation

Standards have been critical to technology innovation, adoption, and growth for decades Standards create access to opportunities and spur growth for a wide range of stakeholders RISC-V is a standards-defined Instruction Set Architecture developed by a global community

02

RISC-V Standard

RISC-V Organization

RISC-V International Global nonprofit association based in Switzerland

Over 350 industry members from over 70 countries Across industries and technical disciplines

Development of the RISC-V standards Large number of Technical Working Groups

Device certification

Ecosystem & community support

RISC-V Base Instruction Set and Modularity

RISC-V is a modular instruction set architecture

- Baseline instruction set with ~45 instructions
- Even privileged spec is separate
- Large set of standardized extensions
- Greenfield opcode-space for custom extensions

Thereby, RISC-V allows for great flexibility

- Spans large space of CPU microarchitectures (deeply embedded to HPC)
- System designers can pick extensions to their needs and extend

Fragmentation versus diversity

Fragmentation Same thing done different ways

Diversity Solving different problems

Managing Diversity for RISC-V

Raw extensions

- Base + standard extensions + custom extensions
- Full suite of options for experimentation and specialized uses
- Massive combinatorial space of options

ISA Profiles

- Packages of ISA extensions for given domain
- Initial set: RVI20 (basic), RVA20/22/23 (application processor)
- Factor out common ISA combinations for use in platform standards

Platform standards

- Hardware/software standards for platforms (much more than just ISA)
- Initial focus OS-A platform for Unix-like OS (includes IOMMU, AIA, etc)

Diversity: Solving different problems

Profiles

Bases	Release 1		Release 2			Future
RV32I RV64I	RVI[20] _{RVI20U32} RVI20U64 RV32I RV64I	RVA20 ^{RVA20U64} RVA20S64 RV64I	RVA22 ^{RVA22U64} RVA22S64 RV64I	RVA23 RV64I		
Load Store Jumps Branches Add Subtract Logical	On years released, this only has a Mandatory Base All other compatible ratified extensions are optional	Mul/Div Atomics Compressed Float Double Priv 1.11 MemRegions Fences VirtualMem	Vector Bitmanip Scalar Crypto FP16 Priv 1.12 Hypervisor Cache	Vector Crypto PtrMasking BFloat16 Zcompressed Priv 1.13	Android Features	More profile types: RVB, RVM RV128 Matrix Ops SPMP/IOPMP CFI CHERI GPU 48/64 bit instructions
		MAIOR			MAIOR	

- Only a subset of extensions are listed above and it is not an exhaustive list Some extensions may be optional or non-profile in one profile and be mandatory in another

Platforms

03

RISC-V Traction

Selected Market Share Projections for RISC-V in 2030

New RISC-V processors

Codasip first commercial CHERI security implementation RISC-V Tensor Unit for ultra-fast Al solutions

Performance P870 and Intelligence X390 for generative AI and ML Data center CPU chiplet solution with I/O hub, DDR memory, PCIe, up to 192 cores

NA900 certified compliant ASIL D of ISO 26262 standard

C Δ **ST**

Use of AI to design RISC-V CPU in under 5 hours

TESIC RISC-V IP passes SERMA CC BA5x[™] RISC-V pr EAL5+ security tests power and E

BA5x[™] RISC-V processors for low power and EMSA5-FS for functional safety

Applications

Qualcom

Sipeed milkv

Qualcomm RISC-V wearable platform with Google Wear OS

First generative AI RISC-V appliance

RISC-V tablet, portable Linux console, and cluster

Vega, the first RISC-V 10 gigabit Ethernet switch

First RISC-V IoT security Towngas Chip has sold over 1,000,000 units

Two self-developed RISC-V communications chips

Andes N25F for performance and low power in enterprise SSD controller, AndesCore™ RISC-V multicore vector processor

MTIA v1: Meta's first generation Al inference accelerator

Developing Ecosystem

-QUINTAURIS

THELINUX FOUNDATION PROJECTS

RISC-V Software Ecosystem

Accelerating the RISC-V Software Ecosystem

The RISC-V Software Ecosystem (RISE) project is a collaborative effort led by industry leaders with a mission to accelerate the development of open source software for the RISC-V architecture.

Quintauris is advancing the adoption of RISC–V globally by enabling next–generation hardware development

RISC-V® SUMMITEU JUNE 24 - 28 | MUNICH 2024

Join the global RISC-V community in Europe to learn about exciting research and how RISC-V shapes the future of semiconductors!

https://riscv-europe.org/summit/2024

Thank you! #RISCVEVERYWHERE

Do you have any questions?

stefan.wallentowitz@hm.edu