Ingredients of An Embedded AI Solution
Software as Main course with Hardware as a Garnish and AI as Condiment

AI Hardware – Munich Urban Colab

Andreas Neumeier, Shubham Sharma, Sebastian Prebeck, Andrew Stevens, Vijay Deep Bhatt, Volkan Esen, Wolfgang Ecker
Goal

› Audio source localization is an interesting topic nowadays
 - E.g. supermarket or industrial environment

› Why not use ML and an embedded device to do that?
 - Embedded devices are extensively used in industrial environment due to low cost
 - Problem: limited hardware resources
Proof – of Concept

› Setup:
 – 4 synchronized microphones
 – 1 FPGA running a RISC-V CPU with special ML instructions
 – 64 KBytes RAM
 – 64 KBytes ROM
 – 20 x 20 LED matrix

› Use the setup for
 – Data collection
 – Proof-of-Concept
Setup

Stereo mic. controller board

Debug communication

LED matrix connection

Serial communication + 5V
Capturing the dataset

- Coordinate system with origin at the left bottom of the LED matrix pad

- Capturing process
 - Random permutation of all LEDs is created
 - A LED lights up
 - A knock is recorded
 - The audio data is sent to the PC for further processing
Signal characteristics

- Plot of sample audio data corresponding to position (20,1)
- High Amplitude for Mic 4
- Less Echo for Mic 4
AI model

- **ROM**: 51 KB (78%)
- **RAM**: 17 KB (27%)
- **Instructions**: 13 Mio
- **Time**: 325 ms
- **Avg. Error**: 1.25 cells
AI model architecture

Convolutional
› Well understood & easy to compute
› Supported in ML frameworks for edge devices (e.g. TFLite)
› Best accuracy

Depthwise convolutional
› Adds to the concept of convolution
› Reduces the amount of expensive multiplications

Temporal convolutional
› Causal convolutions
› Brings time dependency into CNNs
› Not supported well in TFLite
How to fit an AI model in 64KB RAM and 64KB ROM (1)

› Reduce model complexity
 – Use stride where possible
 – Use max pooling if strides don’t perform well
 – Replace multiplication heavy convolutions with depthwise convolutions
 – Analyze the model in regards to under- and overfitting

› Use quantization
 – 32 Bit float if no quantization is used
 – 16 Bit int quantization: 50% memory reduction
 – 8 Bit int quantization: 75% memory reduction

› Do scalable pruning

<table>
<thead>
<tr>
<th></th>
<th>ROM usage</th>
<th>RAM usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final AI model</td>
<td>51KB (78%)</td>
<td>17KB (27%)</td>
</tr>
</tbody>
</table>
How to fit an AI model in 64KB RAM and 64KB ROM (2)

› Tensor Flow Light Interpreter is with several 100k binary code size way to big

› Use Tensor Flow Lite Micro

› Compile Model
 – Apply compression techniques to weights
 – Use pre-interpreter to identify required functions and re-implement to support compression
 – Generate Skeleton
 – Merge minimum number of required functions with Skeleton and Compile
 – Consider compression in hardware accelerator

› Use TVM in future
Outline

- Goal
- The Solution
- First Analysis
- Final Solution
- Summary
Accuracy was lousy
Accuracy was lousy
Analog Signal Analysis showed noisy data signal

- I²S Data Line Signal was partially corrupted
 - Replaced by PDM

Source:
https://en.wikipedia.org/wiki/Pulse-density_modulation
Accuracy was less lousy but still not good
Accuracy was less lousy but still not good
Moving to Power Spectral Density

- Time Series of input values (sound) was transformed to power spectral density
- Result, i.e. nose localization, got worse
Accuracy was less lousy but still not good
Accuracy was less lousy but still not good
Non ML-Solution: Time Difference of Arrival (TDoA)

- Circles can not be used for localization => use hyperbolas
 - Time Difference of Arrival can be measured
Time Difference of Arrival (TDoA)

› A cost function can be created
 - Mic. positions are known
 - Time Difference of Arrival is known

› Computation costly but less accurate than ML
Machine learning (ML) vs. Conventional

- ML provides better accuracy
 - Possible reason: Echo noise from the PVC surface of the LED matrix pad

<table>
<thead>
<tr>
<th>Distance in cells</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML (hit rate)</td>
<td>24%</td>
<td>78%</td>
<td>91%</td>
<td>96%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>Conventional (hit rate)</td>
<td>1%</td>
<td>10%</td>
<td>20%</td>
<td>34%</td>
<td>64%</td>
<td>81%</td>
</tr>
</tbody>
</table>

- Conventional is faster
 - Neural networks are computational heavy

<table>
<thead>
<tr>
<th></th>
<th>Instructions</th>
<th>Execution time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML</td>
<td>~13 Mio</td>
<td>~325 ms</td>
</tr>
<tr>
<td>Conventional</td>
<td>~2,1 Mio</td>
<td>~53 ms</td>
</tr>
</tbody>
</table>
Outline

EdgeAI

› Goal

› The Solution

› First Analysis

› Final Solution

› Summary
A Mixed NN and DSP solution
Applying a High Pass Filter on the Inputs (1)

- Each Biquad stage implements a second order filter using the difference equation:
 - \(b_0 \times x[n] + d_1 \)
 - \(d_1 = b_1 \times x[n] + a_1 \times y[n] + d_2 \)
 - \(d_2 = b_2 \times x[n] + a_2 \times y[n] \)

- Coefficients calculated using Octave.
 - \(b_0 = 0.3045 \)
 - \(b_1 = -0.3045 \)
 - \(b_2 = 0 \)
 - \(a_1 = -0.3910 \)
 - \(a_2 = 0 \)
A Mixed NN and DSP solution
Applying a High Pass Filter on the Inputs (2)
A Mixed NN and DSP solution
High Pass Filter substantially improved the results

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Mean Cell Distance</th>
<th>0 Cell</th>
<th>1 Cell</th>
<th>2 Cell</th>
<th>3 Cell</th>
<th>4 Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNN without HP Filter</td>
<td>1.8</td>
<td>5.83%</td>
<td>48.33%</td>
<td>84.16%</td>
<td>94.16%</td>
<td>97.48%</td>
</tr>
<tr>
<td>CNN with HP Filter</td>
<td>1.4</td>
<td>10.10%</td>
<td>75.10%</td>
<td>91.66%</td>
<td>97.49%</td>
<td>99.99%</td>
</tr>
</tbody>
</table>

Cumulative Accuracy comparison for CNN model with the usage of High Pass Filter in place v/s raw audio signal. A total of 1696 training audio datapoints, trained for 50 epochs and learning rate of 0.01 were used. The cell results are based on 120 test datapoints.

Open Question: Why couldn’t this be achieved already with CNNs?
Software as Main course with Hardware as a Garnish and AI as Condiment

› Findings on ML application
 - The data driven approach with ML was able to deal with body noise – it “detected” that effect
 - The best solution could be achieved with a mixed ML/DSP solution

› Most effort went into SW development
 - Software Infrastructure for Micro including runtime system, driver, application code
 - ML compiler extension

› Second most effort went in HW development
 - Setting up the system (!), building the SoC, building the AI accelerator

› Least effort went into ML
 - Most hereof was data collection and running experiments