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* Introduction to the Intel Neuromorphic Research Chip, Loihi
 Where Loihi shines

e Currentfocus areas for research
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A new class of computer architecture

Standard Computing

Memory

p -

PROGRAMMING BY
ENCODING ALGORITHMS

SYNCHRONOUS
CLOCKING

SEQUENTIAL THREADS
OF CONTROL

if X then

else

NOEN Neuromorphic Computing Lab

Parallel Computing

Memory

OFFLINE TRAINING USING
LABELED DATASETS

SYNCHRONOUS
CLOCKING

PARALLEL
DENSE COMPUTE

hidden layer

LEARN ON THE FLY THROUGH

NEURON FIRING RULES

ASYNCHRONOUS
EVENT-BASED SPIKES

PARALLEL
SPARSE COMPUTE
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Exploiting dynamics at the neuron level

Maximize computation by minimizing data movement

Artificial Neuron (Stateless) Spiking Neuron (Nonlinear Filter)

()= % wyy (8(0) * () + by
V()= (—v; () + u; (1)) — Vinr6i (1) "

Output spikes

||
SW
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Exploiting sparse, asynchronous communication

Fast and efficient, whether in brains or in computers
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NCL

Generalized
Spikes
Spikes carry int8
magnitudes for greater
workload precision

Programmable

Neurons
Neuron models
described by microcode
instructions

Programmable

Neurons
Neuron models
described by microcode
instructions

Neuromorphic Computing Lab

The Latest Loihi chip: Loihi 2
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Max neurons: 180K — 1M (I
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Max synapses: 128M  123M il
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Parallel IO

Parallel IO

Parallel IO
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Neuromorphic Mesh
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10G Ethernet
Accelerated host
message + spike I/O

Neuromorphic cores (128)
Fully redesigned with up to 8192
neurons

Parallel off-chip interfaces (6)
Async wave pipelined at 10 Gb/s
with multicast compression

Ol [2l[e4824

Microprocessor cores (6)
Asynchronous x86 and RISC-V
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Realized in Loihi, improved in Loihi 2

KEY PROPERTIES

Compute and memory integrated
to spatially embody programmed networks

Temporal neuron models (LIF)
to exploit temporal correlation

Spike-based communication
to exploit temporal sparsity

Sparse connectivity
for efficient dataflow and scalability

On-chip learning
without weight movement or data storage

Digital asynchronous implementation
for power efficiency, scalability, and fast prototyping

No floa umbers
No multlply—a.ccumulators Fundamental to Davies et al, “Loihi: A Neuromorphic
\[e} Off-ChIp DRAM deep Ieaming hardware Manycore Processor with On-Chip

Learning.” [EEE Micro, Jan/Feb 2018.
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Where Loihi Shines...
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For the right workloads, orders of magnitude gainsin

latency and energy efficiency are achievable

Reference
architecture
CPU (Intel Core/Xeon)
GPU (Nvidia)
Movidius (NCS)
TrueNorth

cessing

NOEN Neuromorphic Computing Lab

Solution Time Ratio (vs Loihi)

1000 ¢

100

LASSO @

Graph search

K-NN ®

i Adaptive control PilotNeton Lojhi 2

e ¢ JSLAM o
& Better on Loihi
» %,\\ * * ( )

L ] Hkn\
® * ® W, A
ot /%
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Worseonloih) 7 || T
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Energy Ratio (vs Loihi)

M. Davies et al, “Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook,” Proc. IEEE, 202I. Results may vary.

Directly trained  Converted with rate coding

Novel

[Task 1] Keyword Spotter DNN

[Task 1] Keyword spotting (batch size = 1)
[Task 2] Image retrieval (batch size 1)
[Task 2] Image retrieval (batch size = 1)
[Task 3] Image Segmentation

[Task 4] CIFAR-10 classification

[Task 5] DVS gesture recognition vs TrueNorth
[Task 6] Visual-tactile sensing [SLAYER)
[Task 7] Seq MNIST (batch size 1)

[Task 7] Seq MNIST (batch size 64)

[Task 8] Adaptive arm controller [PES)
[Task 9] LASSO

[Task 10] 1D SLAM

[Task 11] k-NN GIST 1M

[Task 12] Graph search

[Task 13] Constraint Satisfaction

Unit energy delay product (EDP) ratio
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Novel recurrent networks give the best gains

Reference
architecture
CPU (Intel Core/Xeon)
GPU (Nvidia)
Movidius (NCS)
TrueNorth

NCL

Neuromorphic Computing Lab

Solution Time Ratio (vs Loihi)

100

10

01

0.01

0.001

Energy Ratio (vs Loihi)

M. Davies et al, “Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook,” Proc. IEEE, 202I. Results may vary.

Recurrent
.
¢ Networks @
o SHEMEr
o . -
L 1
* 1 ‘ & L ]
’ \‘.*._ < » = (Better on Loihi)
L ] kh‘_
.‘ . Hhu‘\ ,%
° N
(Worse on Loihi) ™!
10 100 1000 10000 100000

Directly trained  Converted with rate coding

Novel

[Task 1] Keyword Spotter DNN
®  [Task 1] Keyword spotting (batch size = 1)
®  [Task 2] Image retrieval (batch size 1)
®  [Task 2] Image retrieval (batch size = 1)
® [Task 3] Image Segmentation
®  [Task 4] CIFAR-10 classification
B [Task 5] DVS gesture recognifion vs TrueMorth
®  [Task 6] Visual-tactile sensing (SLAYER)
[Task 7] Seq MNIST (batch size 1)
[Task 7] Seq MNIST (batch size 64)
#  [Task 8] Adaptive arm controller [PES)
® [Task 9] LASSD
® [Task 10] 1D SLAM
® [Task 11] k-NN GIST 1M
®  [Task 12] Graph search
@ [Task 13] Constraint Satisfaction

Unit energy delay product (EDP) ratio
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Zooming in on the best examples:
Optimization problems

LASSO - Sparse coding @
Graphsearch

argmin||lx — Dz||5 + Al|z||,

VA
Input T Sparse
Reconstruction  regularization

Constraint Satisfaction

What is the shortest path to my goal?

‘ <z

00 - 100,000 et

10 —1000x faster

What is the shortest path while visiting each waypoint exactly once?
@./H.

N@EN Neuromorphic Computing Lab intel |abS




Current algorithmic focus areas:
ava algorithm libraries

Direct & HW-aware training
of event-based DNNs

Rich neuron model library
(feed-forward & recurrent)

Family of constraint
optimization solvers

Today: OP, QUBO
Future: MPC, LCA, ILP, ...

Standalone use or as part of

Design models with
attractor dynamics

Stabilize temporal data

Selective data processing

Dynamic working memories

API for algebraic model
description for VSAs

Library of data types and
operations (composition,
binding, factorization, ...)

Al applications

Future directions

* lava-io (sensor/actuator interfaces) *  Signal processing

* lava-robotics (control, planning, physical simulator interfaces) = Off-the-shelf apps (segmentation, tracking, keyword detection, ...)
* lava-evolve (evolutionary training methods) = Neural simulators (Brian2Lava, ...)

* lava-ui(graphical network creation, visualization, debugging)

N[@®EN Neuromorphic Computing Lab
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Loihi Has Confirmed the Value in these areas in the past

Volume 2 Issue 3,

e Gesture recognition + learning Olfaction-inspired odor | pachine
v . Loihi + DAVIS 240C camera recognition and learning M"Ee L
{' i # 60 mW total power, 15 mW dynamic 3000x more data efficient s/ ‘
£ ’ learning than a deep NG AR W AN
r AT autoencoder P R

‘e g
E ard g

Lo P
0 o .g ®

.
b 29 ©  Neuromorphic olfaction

Combinatorial optimization

(CSP, SAT, ILP, QUBO)
2,800x lower energy and 44x faster vs CPU

Sudoku Solver

Adaptive robotic arm control

40x lower power, 50% faster vs GPU pErETEEEe
' EEEEEEEEN

EEEEEN
SEENENaEEw
I I Ko
= = == = Scene understanding Wf/f,; 2
EPoEEErnn Integra"tsd btehal\</.iors:I Objgct ?Mj TR cf}
EEEEE N recognition, tracking, learning  #4 =

100x lower power vs CPU
M. Davies et al, “Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook,” Proc. IEEE, 2021 Results may vary.
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Loihi will confirm value soonin...

/‘/liﬁ
Graph search & motion 14 e~

Model predictive control for planning F
robotic control

TinyYOLO Object Detector
Backbone Multi-scale Heads

Energy-efficient & low-atency via 3
/ Sparse computation with ¢ ifii B e
+/ Exploiting temporal continuity stream " o= =
L]
21

>
Feasible Infeasible
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All Access

EPISODE 6: PART 1
Neuromorphic Computing

; P 1T 8 SR e §
o+ ‘(JYJY‘[ [y A ERSRSY a £}
1 phi tgﬁ i Feed Forward
i TTLANE \Ww EP e Neural Network
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i R
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it 1 {i& [EEL X323 } .
QRIS 2SR RIRE R s AR R

Watch themon YouTube: Part1 Part 2

Architeciure

t

Mike
Davies

Senior Principal Engineer

Director, Neuromorphic Computlng =i

85%

. B

- Let's now talk about
. ¢ how to architect a chip

Synchronous

Asynchronous circuits don't
use free running clocks

Neuro
morphic ™
Computing gl
1
AllAccess =
=
Asynchronous
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https://youtu.be/6Dcs6fQglRA
https://youtu.be/XWds3FIVm0U

NCL

|ntel .
For more info contact:

ashish.rao.mangalore@intel.com
gabriel.fonseca.guerra@intel.com
andreas.wild@intel.com
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