## Low-power, low-latency computing with Loihi 2

### Ashish Rao Mangalore ashish.rao.mangalore@intel.com

22<sup>nd</sup> November 2023





• Introduction to the Intel Neuromorphic Research Chip, Loihi

• Where Loihi shines

• Current focus areas for research

2

## A new class of computer architecture



intel<sup>®</sup> labs

## Exploiting dynamics at the neuron level

Maximize computation by minimizing data movement

#### Artificial Neuron (Stateless)

#### Spiking Neuron (Nonlinear Filter)

 $u_i = \sum_j w_{ij} f(u_j) + b_i$ 







## Exploiting sparse, asynchronous communication

Fast and efficient, whether in brains or in computers







## The Latest Loihi chip: Loihi 2



Programmable Neurons Neuron models described by microcode instructions





## Realized in Loihi, improved in Loihi 2

#### **KEY PROPERTIES**

Compute and memory integrated to spatially embody programmed networks Temporal neuron models (LIF)

to exploit temporal correlation

Spike-based communication to exploit temporal sparsity

Sparse connectivity for efficient dataflow and scalability

**On-chip learning** without weight movement or data storage

**Digital asynchronous implementation** for power efficiency, scalability, and fast prototyping

Yet...

No floating-point numbers No multiply-accumulators No off-chip DRAM

Fundamental to deep learning hardware

Davies et al, "Loihi: A Neuromorphic Manycore Processor with On-Chip Learning." IEEE Micro, Jan/Feb 2018.

intel<sup>®</sup> labs

## Where Loihi Shines...

8

## For the right workloads, orders of magnitude gains in latency and energy efficiency are achievable





M. Davies et al, "Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook," Proc. IEEE, 2021. Results may vary.

## Novel recurrent networks give the best gains

Reference architecture CPU (Intel Core/Xeon) GPU (Nvidia) Movidius (NCS) TrueNorth



M. Davies et al, "Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook," Proc. IEEE, 2021. Results may vary.

## Zooming in on the best examples: Optimization problems



1000 – 100,000x lower energy

What features best explain the sensory input?



What is the shortest path to my goal?



What is the shortest path while visiting each waypoint exactly once?



## Current algorithmic focus areas: Lava algorithm libraries

#### lava-dl

- Direct & HW-aware training of event-based DNNs
- Rich neuron model library (feed-forward & recurrent)



#### lava-optim

- Family of constraint optimization solvers
- Today: QP, QUBO
- Future: MPC, LCA, ILP, ...
- Standalone use or as part of Al applications



#### lava-dnf

- Design models with attractor dynamics
- Stabilize temporal data
- Selective data processing
- Dynamic working memories



#### lava-vsa(WIP)

- API for algebraic model description for VSAs
- Library of data types and operations (composition, binding, factorization, ...)



#### **Future directions**

- lava-io (sensor/actuator interfaces)
- lava-robotics (control, planning, physical simulator interfaces)
- lava-evolve (evolutionary training methods)
- lava-ui (graphical network creation, visualization, debugging)

- Signal processing
- Off-the-shelf apps (segmentation, tracking, keyword detection, ...)
- Neural simulators (Brian2Lava, ...)

## Loihi Has Confirmed the Value in these areas in the past



Adaptive robotic arm control

40x lower power, 50% faster vs GPU

**Gesture recognition + learning** Loihi + DAVIS 240C camera 60 mW total power, 15 mW dynamic

> Combinatorial optimization (CSP, SAT, ILP, QUBO) 2,800x lower energy and 44x faster vs CPU

M. Davies et al, "Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook," Proc. IEEE, 2021. Results may vary.

Olfaction-inspired odor recognition and learning 3000x more data efficient learning than a deep autoencoder



Scene understanding

Integrated behaviors: Object recognition, tracking, learning 100x lower power vs CPU

## Loihi will confirm value soon in ...



Model predictive control for robotic control

Graph search & motion planning



#### Satellite Scheduling



#### **Continual Learning** TinyYOLO Object Detector Backbone Multi-scale Heads (x,y,w,h,id) Pre-Post-Processi Processi





#### EPISODE 6: PART 1 Neuromorphic Computing

• •













# 

### For more info contact:

Ashish Rao Mangalore, ashish.rao.mangalore@intel.com Gabriel Fonseca Guerra, gabriel.fonseca.guerra@intel.com Andreas Wild, andreas.wild@intel.com