

Brain-inspired computing: Systems for the next generation of AI

Matthias Lohrmann

Redefining Brain-inspiration: SpiNNaker (1)

Core

NoC-

SDRAM Link

- Do spiking neurons digitally & asynchronously
- 18 ARM 968 processors / chip
- 1 router / chip with world model
- 1M core supercomputer built

http://apt.cs.manchester.ac.uk/projects/SpiNNaker/SpiNNchip/ http://apt.cs.manchester.ac.uk/projects/SpiNNaker/project/Access/

SpiNNaker 1

• Cortical Brain Model

Learnings for AI

Granularity

- MIMD
- hybrid systems
- exploit sparsity

Sparsity

- activation
- weights
- representation

Functionality

- memory dominates area
- compute is for free

Unique Hybrid Microchip SpiNNaker2

- Faster than NVIDIA's A100 in brain models
- Consumes 1/10th less power than GPUs
- Enables more-than-DNN AI systems

• TU Dresden si	DIN Naker 2	
The University of Manchester	arm 2021/40	
		SpiNNcloud

The SpiNNaker2 Architecture

SerDes

Board2Board coms

152 ARM M4F cores + accelerators

Periphery

Flexible GPIO, QSPI, I2C (Master + • Slave), JTAG

The SpiNNaker2 Architecture

Particle Swarm Evolutionary Algorithms

- Island-based, distributed genetic algorithms for optimization
- Combine the robust local search performance the global exploration power of PSO (particle-swarm optimization)

Functionality!

Fig. 1. Two-dimensional version of the highly dispersive function f15 from the CEC benchmark test suite [17]. The global topology is a double funnel separated by the central ridge region (in gray). The global and several local minima are contained in funnel 1, several deep local minima in funnel 2. This topology is hard since a search heuristic can be trapped in the broad funnel 2.

About SpiNNcloud

Thank You!

SpiNNcloud

Contact: matthias.lohrmann@spinncloud.com

Unified Software Stack

Particle Swarm Evolutionary Algorithms

- Island-based, distributed genetic algorithms for optimization
- Combine the robust local search performance the global exploration power of PSO (particle-swarm optimization)

Fig. 1. Two-dimensional version of the highly dispersive function f15 from the CEC benchmark test suite [17]. The global topology is a double funnel separated by the central ridge region (in gray). The global and several local minima are contained in funnel 1, several deep local minima in funnel 2. This topology is hard since a search heuristic can be trapped in the broad funnel 2.

Sbalzarini and Müller: Particle Swarm CMA Evolution Strategy for the Optimization of Multi-Funnel Landscapes, 2009 IEEE Congress on Evolutionary Computation

